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1. Introduction

Closed string background in superstring theories induces non-trivial effects on D-branes,

which are useful to study non-perturbative properties in supersymmetric gauge theories.

For example, constant NS-NS B-fields along D-branes induce noncommutativity on the

world-volume [1, 2]. Noncommutative instanton [3, 4] is a basic object for studying the

ADHM moduli space of instantons [5], which resolves small instanton singularity.

Closed Ramond-Ramond (R-R) backgrounds also bring novel effects on the D-branes.

In fact, constant self-dual graviphoton backgrounds are utilized to investigate F-terms

in supersymmetric gauge theories via closed/open string duality [6 – 9]. In this set-

up, it is important to fix the scaling condition for the (self-dual) graviphoton field

strength Fαβ, where α, β are spinor indices in four-dimensional space-time. For exam-

ple, in [9] the zero slope limit α′ → 0 with fixed (2πα′)−
1
2Fαβ was considered. On the

other hand, the self-dual graviphoton background Fαβ with fixed (2πα′)
3
2Fαβ provides

a non(anti)commutative deformation of N = 1 superspace [10 – 12]. N = 1 supersym-

metric gauge theories in non(anti)commutative superspace has been studied extensively

(see [12, 13] for example). The instanton solution and its moduli space are also deformed

by non(anti)commutativity [14, 15]. In [15], the instanton is realized in D3/D(−1)-brane

system at the singularity on the orbifold R6/Z2 × Z2 in the graviphoton background.
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Non(anti)commutative N = 1 superspace is generalized to N = 2 extended super-

space, which admits the singlet and non-singlet type of deformations [16]. Supersymmetric

gauge theory on non(anti)commutative N = 2 harmonic superspace [16 – 20] can be real-

ized on D3-branes at the singularity in the orbifold C2/Z2 in the R-R 5-form background

FαβIJ with the same scaling condition as in N = 1 non(anti)commutative case. Here

I, J = 1, 2 are SU(2)R R-symmetry indices. It has been shown in [21] that symmetric-

symmetric (S,S) type field strength F (αβ)(IJ) corresponds to the non-singlet deformation.

An antisymmetric-antisymmetric (A,A) type field strength F [αβ][IJ ] is expected to corre-

spond to the singlet deformation [17]. The deformed instanton equation with some special

deformation parameters was discussed in [22]. Prepotential of non(anti)commutative gauge

theory with singlet deformation was also discussed in [20]. Using string theory technique,

further extension to the N = 4 gauge theory in the R-R 5-form graviphoton background

was investigated [23], but their instanton solutions are not yet studied so far. Recently its

gravity dual has been proposed in [24].

In superstring theory there are R-R backgrounds with various rank. In type IIB

theory, for example, there are R-R 3-forms (and its dual), which correspond to the back-

grounds F (αβ)[AB] and F [αβ](AB), denoted as (S,A) and (A,S) type deformations [23]. Here

A,B = 1, . . . , 4 are SU(4)R R-symmetry indices. By orbifolding C2/Z2, we can introduce

deformation of N = 2 theory. For the (S,A)-type deformation, the field strengths become

F (αβ)(IJ) and F (αβ)[I′J ′] (I ′, J ′ = 3, 4). These deformations cannot be realized in terms of

non(anti)commutative superspace, but have interesting non-perturbative effects.

Recently, in [25] the low-energy effective action of a system of fractional D3 and

D(−1)-branes was studied in the (S,A)-type background with fixed (2πα′)
1
2F (αβ)[IJ ] and

(2πα′)
1
2F (αβ)[I′J ′]. They observed that the effective action of a fractional D3/D(−1) sys-

tem agrees with the instanton effective actions of gauge theory in the Ω-background [26]

by identifying the R-R 3-form field strengths with the Ω-background. The instanton ef-

fective action in the Ω background plays an important role to obtain the closed form of

the prepotential in N = 2 supersymmetric gauge theory with help of the localization

technique [26 – 30]. Since the fractional D3/D(−1) system in the R-R 3-form background

provides a simple string setup, it is important to study the relation between the R-R 3-form

background and the Ω-background in viewpoint of application to more general system. In

a previous paper [31], we studied deformation of N = 2 and 4 super Yang-Mills theories

in the (S,A) or (A,S) type R-R 3-form background.1 It would be natural to expect that

the deformed N = 2 gauge theory gives the effective action of D(−1)-branes in the R-R

background. However, there are some subtleties to identify both theories. The deformed

action of the D3-branes in the R-R 3-form background is rather different from that of

gauge theory in the Ω-background. Gauge theories deformed in the constant R-R 3-form

background have manifest translational symmetry, but the Ω-background metric contains

space-time coordinates explicitly and translational invariance is lost.

The aim of this paper is to study the relation between N = 2 super Yang-Mills theory

deformed in the R-R 3-form background and the fractional D3/D(−1) effective action. We

1In [25] the N = 2 deformed Lagrangian with F
(αβ)[I′J′] = 0 was obtained.
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will solve the instanton equations in deformed theory using the ADHM construction [34] up

to the second order in the deformation parameter. We then construct the instanton effective

action from the field theory and compare it with that obtained from the string theory. We

will see that discrepancy arises at the second order in the deformation parameter, which

comes from the absence of coupling of translational zero modes to the R-R background in

the gauge theory side. When we want to reproduce this coupling as an instanton solution,

we need to add one term to the deformed action at the second order. The improved action

has the space-time dependent gauge coupling, which is similar to that in the Ω-background.

But two actions are shown to be different. However, they have the same instanton equations

of motion at the lowest order in gauge coupling and give the same instanton effective action.

This analysis can be generalized into the N = 4 super Yang-Mills theory in the R-R

3-form background and N = 4 version of the Ω-background. This subject will be discussed

in the next paper [32].

The organization of this paper is as follows. In section 2, we introduce four-dimensional

(S,A)-deformed N = 2 U(N) super Yang-Mills action defined on (fractional) D3-branes at

the singularity of the orbifold C2/Z2. The instanton equation is obtained and solved via the

ADHM construction. We calculate the instanton effective action for the self-dual solution

and compare this result with the D3/D(−1)-branes result [25]. However, once we introduce

a term which breaks translational symmetry of the deformed action, both results agree even

at the second order.

In section 3, the relation between the (S,A)-deformed super Yang-Mills theory and the

Ω-background is discussed. Section 4 is devoted to conclusions and discussions. We make

a comment on the mass term deformation of the instanton effective action induced by the

(A,S)-type background. A brief introduction to the ADHM construction of instantons is

presented in appendix A. A detailed calculation of the instanton effective action can be

found in appendix B.

2. Instanton calculus in the (S,A)-deformed N = 2 super Yang-Mills the-

ory

In this section, we discuss four-dimensional N = 2 U(N) super Yang-Mills theory deformed

by the (S,A)-type R-R 3-form background [31] and calculate the instanton solution and the

instanton effective action. N = 2 U(N) super Yang-Mills theory is described by gauge fields

Aµ (µ = 1, 2, 3, 4), complex scalars ϕ, ϕ̄ and Weyl fermions ΛI
α and Λ̄α̇

I (I = 1, 2), which

belong to the adjoint representation of gauge group U(N). We denote Tm as the basis of

U(N) generators normalized as Tr(TmT n) = κδmn with constant κ. The Lagrangian is

given by

L0 =
1

κ
Tr

[

−1

4
FµνF

µν +
iθg2

32π2
Fµν F̃

µν −DµϕD
µϕ̄− 1

2
g2[ϕ, ϕ̄]2

−iΛIα(σµ)αβ̇DµΛ̄β̇
I +

i√
2
gΛI [ϕ̄,ΛI ] −

i√
2
g Λ̄I [ϕ, Λ̄

I ]

]

. (2.1)

Here Fµν = ∂µAν − ∂νAµ + ig[Aµ, Aν ] is the gauge field strength, g is the gauge coupling

constant and Dµ∗ = ∂µ ∗ +ig[Aµ, ∗] is a gauge covariant derivative. We also define σµ =
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(iτ1, iτ2, iτ3, 1) and σ̄µ = (−iτ1,−iτ2,−iτ3, 1), where τ i (i = 1, 2, 3) are the Pauli matrices.

θ is a theta angle and F̃µν = 1
2εµνρσF

µν . This theory is the low-energy effective theory

of N (fractional) D3-branes on C × C2/Z2, where the D3-branes are located in the fixed

point of the orbifold [33].

We now introduce the (S,A)-type R-R 3-form F (αβ)[AB]. After Z2 orbifolding, the

surviving components are F (αβ)12 and F (αβ)34, from which we define N = 2 deformation

parameters as Cαβ = 4
√

2π(2πα′)
1
2F (αβ)12, C̄αβ = 4

√
2π(2πα′)

1
2F (αβ)34.

We also use the notation Cµν ≡ εβγ(σµν)α
γCαβ and C̄µν ≡ εβγ(σµν)α

γC̄αβ where

σµν = 1
4(σµσ̄ν − σν σ̄µ). Cµν corresponds to the self-dual graviphoton field strength in

N = 2 supergravity multiplet while C̄µν corresponds to the self-dual background of the

vector multiplet [25]. The deformed Lagrangian up to the second order in the deformation

parameter is [31]

L = L0 + LC , (2.2)

where the second term LC in (2.2) is the interaction term obtained from the computation

of disk amplitudes of open strings in the R-R 3-form background;

LC =
1

κ
Tr

[

ig(Cµν ϕ̄+ C̄µνϕ)Fµν +
i√
2
gΛα

IΛβIC̄
(αβ) +

1

2
g2(Cµνϕ̄+ C̄µνϕ)2

]

. (2.3)

We study the instanton solution of the deformed theory based on the Euclidean action.

The bosonic part relevant to the gauge instanton is written in the perfect square form S′ as

S′ =

∫

d4x
1

κ
Tr

[

1

2

(

F (+)
µν − ig(Cµν ϕ̄+ C̄µνϕ)

)2

]

+

(

−8π2

g2
+ iθ

)

k

=

∫

d4x
1

κ
Tr

[

1

2

(

F (−)
µν

)2 − ig(Cµν ϕ̄+ C̄µνϕ)F (+)
µν − g2

2
(Cµν ϕ̄+ C̄µνϕ)2

]

+

(

8π2

g2
+ iθ

)

k. (2.4)

where F
(±)
µν = 1

2(Fµν ± F̃µν). The instanton number k is defined by

k =
g2

32π2

∫

d4x
1

κ
TrFµν F̃

µν . (2.5)

We then obtain the self-dual and the anti-self-dual equations.

F (−)
µν = 0, (2.6)

F (+)
µν − ig(Cµν ϕ̄+ C̄µνϕ) = 0. (2.7)

A solution corresponding to the equation (2.6) is called the self-dual solution while the one

to the equation (2.7) is the anti-self-dual solution. The other fields satisfy the equation

of motion in the (anti-)self-dual background. From the Lagrangian (2.2), the equations of

– 4 –



J
H
E
P
1
2
(
2
0
0
8
)
1
1
3

motion are derived as

D2ϕ̄− i
√

2gΛ̄IΛ̄
I − g2

[

ϕ̄, [ϕ, ϕ̄]
]

+ igFµν C̄
µν + g2ϕC̄µνC̄

µν + g2ϕ̄CµνC̄
µν = 0,

D2ϕ+ i
√

2gΛIΛI − g2
[

ϕ, [ϕ̄, ϕ]
]

+ igFµνC
µν + g2ϕ̄CµνC

µν + g2ϕCµνC̄
µν = 0,

(σµ)
αβ̇
DµΛ̄I

β̇ +
√

2g[ϕ̄,ΛIα] +
√

2g C̄αβΛβ
I = 0,

(σ̄µ)α̇βDµΛI
β −

√
2g[ϕ, Λ̄Iα̇] = 0,

Dµ

(

Fµν − 2igϕ̄Cµν − 2igϕC̄µν
)

−ig[ϕ,Dν ϕ̄] − ig[ϕ̄,Dνϕ] − g(σν)
αβ̇

{ΛIα, Λ̄I
β̇} = 0. (2.8)

First we consider the case where the vacuum expectation values (VEVs) of the scalar fields

are zero. In this case, we find some exact solutions. For example, in the case of C̄µν = 0,

the Dirac equation for the fermion Λ̄α̇ has no zero mode in the self-dual background. We

can set Λ̄ = 0. Then the equation of motion for ϕ̄ becomes

D2ϕ̄− g2
[

ϕ̄, [ϕ, ϕ̄]
]

= 0, (2.9)

from which ϕ̄ = 0 is found to be an exact solution. Therefore ϕ̄ = Λ̄ = 0 is shown to be an

exact solution. Then the equation of motion for the other fields becomes

F (−)
µν = 0, (2.10)

(σ̄µ)α̇βDµΛI
β = 0, (2.11)

D2ϕ+ i
√

2gΛIΛI + iCµνFµν = 0. (2.12)

The equations (2.10)–(2.12) are solved by the ADHM construction [34] (see appendix A)

for any instanton number k as

Aµ = −iŪ∂µU, (2.13)

ΛI
α = Ū(MIf b̄α − bαfM̄I)U, (2.14)

ϕ = −i
√

2

4
ǫIJ ŪMIfM̄JU + Ū

(

0 0

0 χ12 + 1kC

)

U. (2.15)

Here U is the (N +2k)×N matrix which satisfies ∆̄α̇U = 0 with the (N +2k)× 2k matrix

∆α̇ = aα̇ + bβ(σµ)βα̇x
µ =

(

wα̇

(a′ + x)αα̇

)

, xαα̇ = (σµ)αα̇x
µ, (2.16)

where the parameters a′µ = 1
2 (σ̄µ)α̇αa′αα̇ and wα̇ satisfy the ADHM constraints

(~τ)α̇
β̇
(w̄β̇wα̇ + ā′β̇αa′αα̇) = 0, a′µ = ā′µ. (2.17)

MI = (µI M′I
α )T is the (N + 2k) × k constant Grassmann-odd matrix which satisfies the

fermionic ADHM constraints

µ̄Iwα̇ + w̄α̇µ
I + [M′αI , a′αα̇] = 0, M′I

α = M̄′I
α . (2.18)

– 5 –
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The parameters a′αα̇, wα̇, M′I
α and µI are called ADHM moduli. C in (2.15) is the 2 × 2

matrix of which components are Cα
β = 1

2(σµν)α
βCµν . The k × k matrix χ obeys the

following equation such that (2.15) is a solution of (2.12):

Lχ = i

√
2

4
ǫIJM̄IMJ + Cµν [a′µ, a

′
ν ], (2.19)

where the operator L is defined by

L∗ =
1

2

{

w̄α̇wα̇, ∗
}

+
[

a′µ, [a
′µ, ∗]

]

. (2.20)

In the case of Cµν = 0, a solution of

F (+)
µν = 0, (2.21)

(σµ)
αβ̇
DµΛ̄β̇

I = 0, (2.22)

D2ϕ̄− i
√

2gΛ̄I Λ̄
I = 0, (2.23)

ΛI
α = 0, (2.24)

ϕ = 0 (2.25)

satisfies the equations of motion. In this case, the solution is independent of C̄µν because

the self-duality of C̄µν leads to C̄µνF
(−)
µν = 0 in (2.8). Therefore the anti-self-dual solution

is not deformed by C̄µν when Cµν = 0.

Nextly we consider the case where both Cµν and C̄µν are nonzero and where the adjoint

scalar fields ϕ, ϕ̄ have nonzero VEVs. In this case, we should consider the constrained

instanton solution (see [34] for a review). We solve the equations of motion perturbatively in

the gauge coupling g. The expansion in g gives reliable results when the VEVs φ = 〈ϕ〉 and

φ̄ = 〈ϕ̄〉 are large. Then in the self-dual background the classical action S is expanded as

S =
8π2k

g2
+ ikθ + g0S

(0)
eff + O(g2). (2.26)

S
(0)
eff is called the instanton effective action. The instanton effective action in the anti-

self-dual background is also defined similarly. S
(0)
eff is expressed by the ADHM moduli

parameters by plugging the constrained instanton solution into the action.

In the next subsections, we investigate the constrained instanton solutions. We will

discuss the solution for the self-dual and the anti-self-dual cases separately.

2.1 Anti-self-dual case

For the anti-self-dual case (2.7), the solution is expanded in the gauge coupling g as

Aµ = g−1A(0)
µ + gA(1)

µ + · · · , (2.27)

ΛI = g
1
2 Λ(0)I + g

5
2 Λ(1)I + · · · , (2.28)

Λ̄I = g−
1
2 Λ̄

(0)
I + g

3
2 Λ̄

(1)
I + · · · , (2.29)

ϕ = g0ϕ(0) + g2ϕ(1) + · · · , (2.30)

ϕ̄ = g0ϕ̄(0) + g2ϕ̄(1) + · · · . (2.31)

– 6 –
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The equations of motion (2.8) for the fields at the leading order become

F (0)(+)
µν = 0, (2.32)

∇2ϕ̄(0) − i
√

2Λ̄
(0)
I Λ̄(0)I = 0, (2.33)

∇2ϕ(0) = 0, (2.34)

(σµ)
αβ̇

∇µΛ̄
(0)β̇
I = 0, (2.35)

(σ̄µ)α̇β∇µΛ
(0)I
β −

√
2[ϕ(0), Λ̄(0)Iα̇] = 0, (2.36)

∇µF
(0)µν = 0, (2.37)

where ∇µ denotes the covariant derivative in the instanton background ∇µ = ∂µ+i[A
(0)
µ , ∗].

These equations are not deformed. The instanton effective action S
(0)
eff in (2.26) is evalu-

ated as

S
(0)
eff =

1

κ

∫

d4x Tr

[

∇µϕ
(0)∇µϕ̄(0) − i√

2
Λ̄

(0)
I [ϕ(0), Λ̄(0)I ]

]

, (2.38)

which is not also deformed.

2.2 Self-dual case

For the self-dual case (2.6), we have the expansion

Aµ = g−1A(0)
µ + gA(1)

µ + · · · , (2.39)

ΛI = g−
1
2 Λ(0)I + g

3
2 Λ(1)I + · · · , (2.40)

Λ̄I = g
1
2 Λ̄

(0)
I + g

5
2 Λ̄

(1)
I + · · · , (2.41)

ϕ = g0ϕ(0) + g2ϕ(1) + · · · , (2.42)

ϕ̄ = g0ϕ̄(0) + g2ϕ̄(1) + · · · . (2.43)

The equations of motion at the leading order are

F (0)(−)
µν = 0, (2.44)

∇2ϕ̄(0) + iF (0)
µν C̄

µν = 0, (2.45)

∇2ϕ(0) + i
√

2Λ(0)IΛ
(0)
I + iF (0)

µν C
µν = 0, (2.46)

(σ̄µ)α̇β∇µΛ
(0)I
β = 0, (2.47)

(σµ)
αβ̇

∇µΛ̄
(0)
I

β̇ +
√

2[ϕ̄(0),Λ
(0)
Iα ] +

√
2Λ(0)β

IC̄(βα) = 0, (2.48)

∇µF
(0)µν = 0, (2.49)

The equations (2.49) is automatically satisfied due to the self-dual condition (2.44). Other

equations (2.44)–(2.47) have been solved via the ADHM construction in the case of C̄µν =

– 7 –
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0 [25]. For nonzero Cµν and C̄µν these are solved as

A(0)
µ = −iŪ∂µU, (2.50)

Λ(0)I
α = Ū(MIf b̄α − bαfM̄I)U, (2.51)

ϕ(0) = −i
√

2

4
ǫIJ ŪMIfM̄JU + Ū

(

φ 0

0 χ12 + 1kC

)

U, (2.52)

ϕ̄(0) = Ū

(

φ̄ 0

0 χ̄12 + 1kC̄

)

U. (2.53)

Here C̄ is the 2 × 2 matrix of which components are C̄α
β = 1

2(σµν)α
βC̄µν . The k × k

matrices χ and χ̄ satisfy the equations

Lχ = i

√
2

4
ǫIJM̄IMJ + w̄α̇φwα̇ + Cµν [a′µ, a

′
ν ], (2.54)

Lχ̄ = w̄α̇φ̄wα̇ + C̄µν [a′µ, a
′
ν ]. (2.55)

We note that we do not need to solve the equation of motion for Λ̄
(0)α̇
I explicitly. This

is because contribution of Λ̄
(0)α̇
I to the action is just the subleading order in gauge coupling

constant g. We also note that the solutions of the gauge field Aµ and Weyl fermion Λ
(0)I
α

are not deformed by Cµν and C̄µν and the ADHM constraints (2.17) and (2.18) (see ap-

pendix A) do not change. This is contrasted with the case of N = 1 non(anti)commutative

deformed super Yang-Mills [15, 14] in which the bosonic ADHM constraints (2.17) are

changed due to the non-zero graviphoton background while fermionic constraints (2.18)

remain unchanged.

Now let us evaluate the instanton effective action in the self-dual instanton background

and write down it in terms of the ADHM moduli. Some formulae are proved in appendix B.

By substituting the expansion (2.39)–(2.43) into the classical action, the instanton effective

action is given by

S
(0)
eff =

1

κ

∫

d4x Tr

[

∇µϕ
(0)∇µϕ̄(0) − i√

2
Λ(0)I [ϕ̄,Λ

(0)
I ] − iϕ̄(0)F (0)

µν C
µν

−iϕ(0)F (0)
µν C̄

µν − i√
2
Λ(0)I

α Λ
(0)
βI C̄

(αβ)

]

. (2.56)

From the equation of motion (2.45), the first and the fourth terms in (2.56) become the

total derivative,

1

κ

∫

d4x Tr
[

∇µϕ
(0)∇µϕ̄(0) − iϕ(0)F (0)

µν C̄
µν
]

=

∫

d4x
1

κ
Tr
[

∂µ

(

ϕ(0)∇µϕ̄(0)
)

]

, (2.57)

which is evaluated by the value of ∇µϕ
(0) at infinity as

∫

d4x
1

κ
Tr
[

∂µ

(

ϕ(0)∇µϕ̄(0)
)

]

=
1

κ
lim

|x|→∞
2π2|x|2xµTr

[

ϕ(0)∇µϕ̄
(0)
]

=
4π2

κ
trk

[

1

2
w̄α̇(φ̄φ+ φφ̄)wα̇ − w̄α̇φwα̇χ̄

]

. (2.58)
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Here trk denotes the trace for instanton indices. The second and the fifth terms in (2.56)

are calculated as (see appendix B)
∫

d4x
1

κ
Tr

[

− i√
2
Λ(0)αI

[

ϕ̄(0),Λ
(0)
αI

]

− i√
2
C̄(αβ)Λ(0)I

α Λ
(0)
βI

]

=
1

κ

√
2π2iǫIJtrk

[

µ̄I φ̄µJ − M̄IMJ χ̄+
1

2
C̄(αβ)M′I

αM′J
β

]

. (2.59)

The third term is
∫

d4x
1

κ
Tr
[

−iϕ̄(0)F (0)
µν C

µν
]

=
π2

κ
trk

[

−4Cµν [a′µ, a
′
ν ]χ̄+ CµνC̄µνw̄

α̇wα̇

]

. (2.60)

Finally S
(0)
eff becomes

S
(0)
eff =

4π2

κ
trk

[

−
(

w̄α̇φ̄wα̇ + C̄µν [a′µ, a
′
ν ]
)

L
−1
(

i

√
2

4
ǫIJM̄IMJ + w̄α̇φwα̇ + Cµν [a′µ, a

′
ν ]
)

+ i

√
2

4
ǫIJ µ̄

I φ̄µJ +
1

2
w̄α̇(φ̄φ+ φφ̄)wα̇ − i

√
2

8
C̄(αβ)ǫIJM′I

αM′J
β

+
1

4
CµνC̄µνw̄

α̇wα̇

]

. (2.61)

This action can be also obtained from the following action by integrating over the auxiliary

fields χ, χ̄, ψ̄α̇
I and ~D

S
(0)
eff =

2π2

κ
trk

[

−2
(

[χ̄, a′µ] − C̄µνa
′ν
)(

[χ, a′µ] − Cµρa′ρ
)

+ (χ̄w̄α̇ − w̄α̇φ̄)(wα̇χ− φwα̇) + (χw̄α̇ − w̄α̇φ)(wα̇χ̄− φ̄wα̇)

− i

√
2

2
µ̄IǫIJ(µJ χ̄− φ̄µJ) − i

√
2

4
M′αIǫIJ

(

[χ̄,M′J
α ] − C̄(αβ)M′βJ

)

+
1

2
CµνC̄µρ(δν

ρw̄α̇wα̇ + 4a′νa
′ρ)

]

+ SADHM, (2.62)

where SADHM contains the Lagrange multipliers ψ̄α̇
I ,
~D associated with the ADHM con-

straints (2.17) and (2.18) by its equation of motion. It is given by

SADHM =
4π2

κ
trk

[

−iψ̄α̇
I

(

µ̄Iwα̇ + w̄α̇µ
I + [M′αI , a′αα̇]

)

− i ~D · ~τ α̇
β̇

(

w̄β̇wα̇ + ā′β̇αa′αα̇

)

]

. (2.63)

We note that this effective action (2.62) is different from the fractional D3/D(−1) action

in the R-R 3-form background at O(CC̄) which is obtained as [25]

S
(0)
str =

2π2

κ
trk

[

−2
(

[χ̄, a′µ] − C̄µνa
′ν
)(

[χ, a′µ] − Cµρa′ρ
)

+ (χ̄w̄α̇ − w̄α̇φ̄)(wα̇χ− φwα̇) + (χw̄α̇ − w̄α̇φ)(wα̇χ̄− φ̄wα̇)

− i

√
2

2
µ̄IǫIJ(µJ χ̄− φ̄µJ) − i

√
2

4
M′αIǫIJ

(

[χ̄,M′J
α ] − C̄(αβ)M′βJ

)

]

+ SADHM. (2.64)
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The difference between (2.64) and (2.62) is

S
(0)
str − S

(0)
eff = −π

2

κ
trk

[

CµνC̄µρ(δν
ρw̄α̇wα̇ + 4a′νa

′ρ)
]

= −π
2

κ
trk

[

CµνC̄µν(w̄α̇wα̇ + a′ρa
′ρ)
]

. (2.65)

Here we have used the relation from the self-duality of Cµν and C̄µν

CµρC̄ν
ρ +CνρC̄µ

ρ =
1

2
CρσC̄

ρσδµν . (2.66)

In order to recover the effective action of the D3/D(−1)-branes (2.64) from the (S,A)-

deformed super Yang-Mills at O(CC̄), we find that the term

δL = − g2

16κ
CρσC̄ρσ|x|2Tr [FµνFµν ] (2.67)

needs to be added to the space-time Lagrangian (2.2). The contribution δS
(0)
eff to the

instanton effective action coming from (2.67) is evaluated and coincides with (2.65) (see

appendix B for detail). Then S
(0)
eff + δS

(0)
eff completely agrees with S

(0)
str . We note that the

term (2.67) which contains space-time coordinates explicitly cannot be calculated in our

previous paper [31] in which we have treated the constant R-R background only. We also

note that the term (2.67) does not change the self-dual equation at the leading order (2.44)–

(2.47). Hence when we start from the improved space-time Lagrangian L+ δL, we find the

same self-dual solution (2.51)–(2.53) and obtain (2.64) as the instanton effective action of

the improved theory.

The evaluation of the instanton effective action in string theory is based on the D(−1)-

brane effective action. In the presence of the R-R background, the modulus a′µ is stabilized

at the origin due to the O(CC̄) contribution in (2.64) which is regarded as the mass term

of a′µ. This moduli stabilization breaks translational invariance in the D3-brane world-

volume. However, from the viewpoint of the D3-brane effective action, namely (S,A)-

deformed super Yang-Mills theory, the background does not induce any terms violating

translational symmetry . This is the reason why there is no a′µ mass term C̄µνCνρa
′
µa

′ρ in

the field theory calculation in (2.64).

The action (2.64) is invariant under the following deformed supersymmetry

transformation

δa′αα̇ = iξ̄α̇IM′
α

I , δM′
α

I = −2
√

2ǫIJ ξ̄α̇
J [a′αα̇, χ] + 2

√
2ξ̄α̇I(σµ)αα̇C

µνa′ν ,

δwα̇ = iξ̄α̇Iµ
I , δµI = −2

√
2ǫIJ ξ̄α̇

J(wα̇χ− φwα̇),

δχ = 0, δχ̄ = −
√

2iǫIJ ξ̄α̇I ψ̄
α̇

J ,

δ ~D = −
√

2~τ α̇
β̇
ξ̄α̇

I [ψ̄β̇
I , χ], δψ̄α̇

I = 2[χ, χ̄]ξ̄α̇
I − i ~D · ~τ α̇

β̇
ξ̄β̇

I , (2.68)

when CµρC̄ρν = C̄µρCρν . As we will see in next section, this condition is equivalent to the

flatness of the Ω-background. After the topological twist, the above symmetry becomes the

BRST symmetry which is important to apply the localization technique [27, 26, 28 – 30] for

the calculation of the prepotential. The instanton effective action is BRST-exact as shown

in [25].
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3. Relation to the Ω-background deformation

In the previous section, we showed that the instanton effective action in the (S,A)-deformed

N = 2 super Yang-Mills theory coincides with the D3/D(−1)-brane effective action with

(S,A)-type background if we introduce the additional term (2.67). In the following, we

discuss the relation between the Ω-background deformation and the (S,A)-deformation of

the N = 2 super Yang-Mills theory.

The four-dimensional Ω-deformed N = 2 super Yang-Mills Lagrangian L(Ω, Ω̄) is

obtained by the dimensional reduction of six-dimensional N = 1 super Yang-Mills theory

in the Ω-background metric [35]

ds26 = 2dzdz̄ + (dxµ + Ω̄µdz + Ωµdz̄)2, (3.1)

where z = 1√
2
(x5 − ix6), z̄ = 1√

2
(x5 + ix6). Ωµ and Ω̄µ are defined by Ωµ ≡ Ωµνxν ,

Ω̄µ ≡ Ω̄µνxν with constant anti-symmetric matrices Ωµν = −Ωνµ and Ω̄µν = −Ω̄νµ. In this

background, all nonzero components in the Riemann tensor are proportional to ΩµνΩ̄
ν
ρ −

Ω̄µνΩν
ρ. Then Ω and Ω̄ are taken to be commutative matrices so that space-time is

flat. As we will see, under the identification (3.11), this flatness condition becomes the

supersymmetry invariance of the instanton effective action.

The six dimensional N = 1 super Yang-Mills action is

S =

∫

d6x
√−gTr

[

−1

4
gMP gNQFMNFPQ − i

2
Ψ̄eM mΓmDMΨ

]

, (3.2)

where M,N = 0, . . . 5 stands for curved indices in six dimensional space-time and m is

a local Lorentz index. eM m is a vielbein and Γm is a six dimensional gamma matrix.

The covariant derivative is defined by DM = DM − 1
2ωM,mnΓmn where DM is an ordinary

gauge covariant derivative and ωM,mn is a spin connection. The field strength is defined by

FMN = ∂MAN − ∂NAM + ig[AM , AN ] and Ψ is a six dimensional Dirac spinor. After the

dimensional reduction and the Wick rotation, we obtain the four-dimensional Lagrangian

L(Ω, Ω̄) = L0 + δL(Ω, Ω̄), (3.3)

where L0 is the N = 2 super Yang-Mills Lagrangian (2.1) and δL(Ω, Ω̄) is

δL(Ω, Ω̄) =
1

k
Tr

[

gFµνD
µϕ̄Ων + gFµνD

µϕΩ̄ν + ig2Dµϕ̄[ϕ, ϕ̄]Ωµ

+ig2Dµϕ[ϕ, ϕ̄]Ω̄µ − g2FµρFν
ρΩµΩ̄ν +

g2

2
Dµϕ̄Dν ϕ̄ΩµΩν

−g2Dµϕ̄DνϕΩµΩ̄ν +
g2

2
DµϕDνϕΩ̄µΩ̄ν + ig3[ϕ, ϕ̄]FµνΩ̄µΩν

− g√
2
ΛαIDµΛαI Ω̄

µ − g√
2
Λ̄α̇IDµΛ̄α̇IΩµ

− g√
2
Λα

IΛβIΩ̄
(αβ) − g√

2
Λ̄α̇IΛ̄β̇

IΩ(α̇β̇)

]

+ O(Ω3, Ω̄3). (3.4)

Here Ω̄(αβ) = 1
2ε

αγ(σµν)γ
βΩµν , Ω̄(α̇β̇) = 1

2ε
α̇γ̇(σ̄µν)β̇ γ̇Ω̄µν , σ̄µν = 1

4(σ̄µσν− σ̄νσµ). This part

δL(Ω, Ω̄) can be interpreted as a shift of the scalar fields (ϕ, ϕ̄) → (ϕ− iΩµDµ, ϕ̄+ iΩ̄µDµ)
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and the modification of the complex coupling constant τ → τ− 4
√

2i
g2 θαθ̄βΩ̄(αβ) in the N = 2

superfield formalism of super Yang-Mills action [29].

Notice that once we assume the self-duality condition of Ω̄µν , the term which contains

Ω̄(α̇β̇) vanish due to the anti-self-duality of σ̄µν . In the following, we assume self-duality of

Ωµν and Ω̄µν .

The Lagrangian (3.3) contains many xµ-dependent interactions and looks like quite

different from the (S,A)-deformed theory. However, the leading order equations of motion

for the self-dual instanton (2.39)–(2.43) turn out to be not so different from the (S,A)-

deformed theory. It is given by

∇2ϕ(0) − (∇µF (0)
µν )Ων + F (0)

µν Ωµν +
√

2iΛ(0)αIΛ
(0)
αI = 0, (3.5)

∇2ϕ̄(0) − (∇µF (0)
µν )Ω̄ν + F (0)

µν Ω̄µν = 0, (3.6)

∇µ(F (0)
µν + F̃ (0)

µν ) = 0, (3.7)

F (0)
µν = F̃ (0)

µν , (3.8)

i(σµ)
αβ̇

∇µΛ̄(0)β̇
I +

√
2i[ϕ̄(0),Λ

(0)
αI ] −

√
2Λ

(0)
βI Ω̄α

β +
1√
2
∇µΛ

(0)
αI Ω̄µ = 0, (3.9)

i(σ̄µ)α̇α∇µΛ(0)
α

I = 0. (3.10)

The Bianchi identity and the self-dual condition F
(0)
µν = F̃

(0)
µν can be used to remove the

second term in (3.5) and (3.6). After the identification

Ωµν = iCµν , Ω̄µν = iC̄µν , (3.11)

the leading order equations of motion (3.5)–(3.10) agree with the equations (2.44)–(2.49) for

(S,A)-deformed super Yang-Mills theory except for the equation of motion for Λ̄. However

the contribution of Λ̄
(0)
I is just the subleading order in g, hence it does not contribute to

the instanton effective action. The O(g0) terms in the instanton effective action (3.4) is

given by

S
(0)
eff (Ω, Ω̄) =

1

κ

∫

d4x Tr

[

∇µϕ
(0)∇µϕ̄(0) − i√

2
Λ(0)I [ϕ̄,Λ

(0)
I ] − ϕ̄(0)F (0)

µν Ωµν

−ϕ(0)F (0)
µν Ω̄µν +

1√
2
Λ(0)

α
IΛ

(0)
βI Ω̄(αβ)

]

+
1

κ

∫

d4x Tr

[

F (0)
µρ F

(0)
ν

ρΩµΩ̄ν +
1√
2
Λ(0)αI∇µΛ

(0)
αI Ω̄µ

]

. (3.12)

The last term in (3.12) can be rewritten as

1√
2
Tr
[

Ω̄µΛ(0)αI∇µΛ
(0)
αI

]

=
1√
2
Ω̄µνTr

[

Λ(0)IσµνΛ
(0)
I − ∂ρ

(

xνΛ
(0)IσµρΛ

(0)
I

)

]

. (3.13)

Here the second term in the right hand side is the total derivative and does not contribute

to the effective action in the instanton background since xνΛ
(0)IσµρΛ

(0)
I behaves as |x|−5
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for large |x|. Therefore we have

S
(0)
eff (Ω, Ω̄) =

1

κ

∫

d4x Tr

[

∇µϕ
(0)∇µϕ̄(0) − i√

2
Λ(0)I [ϕ̄,Λ

(0)
I ] − ϕ̄(0)F (0)

µν Ωµν

−ϕ(0)F (0)
µν Ω̄µν − 1√

2
Λ(0)

α
IΛ

(0)
βI Ω̄(αβ)

]

+
1

κ

∫

d4x Tr
[

F (0)
µρ F

(0)
ν

ρΩµΩ̄ν
]

. (3.14)

This result coincides with the one obtained from the improved action discussed in section

2. The last term in (3.14) agrees with (2.67) by using the relation (2.66) and self-duality

of F
(0)
µν .

We note that we compared the space-time action deformed in the R-R 3-form back-

ground with the action in the Ω-background without the R-symmetry gauge field Wilson

line. If one includes the R-symmetry gauge field Wilson line, one gets the topological field

theory in the Ω-background [27, 26] which differs from the N = 2 action in the same

background by topological terms [29]. Therefore the instanton effective action remains

the same by the twisting. The deformed action is BRST-exact and the instanton effective

action is also written in the BRST-exact form. Although it is not clear at this moment

how to introduce the R-symmetry gauge Wilson line in the fractional D3-branes, the BRST

transformations would correspond to the deformed supersymmetry transformation in the

R-R 3-form background.

4. Conclusions and discussions

In this paper, we investigate (anti-)self-dual solutions in the deformed N = 2 super Yang-

Mills theory. The theory is realized on the (fractional) D3-branes at the fixed point of the

orbifold C×C2/Z2 in the presence of the R-R 3-form field strength background. The R-R

3-form background F (αβ)[AB] is scaled as (2πα′)
1
2F (αβ)[AB] = fixed in order to give the

deformation parameters C, C̄ the mass dimension one. In the N = 2 supergravity context,

these are interpreted as the graviphoton and the vector backgrounds, respectively [25].

The instanton solution is expressed in terms of the the ADHM moduli and the de-

formation parameters. With this solution, we explicitly evaluate the instanton effective

action for the self-dual solution using the field theoretical method. The result agrees with

the one previously obtained in the string theory calculation [25] up to the first order in the

deformation parameters but differs from that at O(CC̄). However, once we add the trans-

lational symmetry breaking term to the (S,A)-deformed action and consider the improved

action, we obtain the string theory result.

The deformed N = 2 instanton effective action derived from the improved action is

the same with the the action in Ω-background [27] despite the fact that the space-time

action has a different form. The instanton effective action is invariant under deformed

supersymmetry if C and C̄ commute with each other, which corresponds to the flatness

condition of the Ω-background.

It is interesting to consider the deformation in the (A,S)-type background. In [31], we

have shown that the (A,S)-type R-R 3-form background F [αβ](AB) induces mass terms for
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the chiral fermion Λ and other adjoint scalar field interactions.2 In self-dual case, we can

show that the bosonic interactions induced by the (A,S)-background are sub-leading order

and do not contribute to the instanton effective action. The only relevant part is the mass

term for Λ which contributes to the equation of motion of Λ̄. However, as we have seen

section 2, the solution of Λ̄ does not contribute to the instanton effective action because

it enters in the space-time action as the sub-leading part. Therefore the only modification

in the instanton effective action by the (A,S)-background is just the mass term of the

Λ which can be easily evaluated by Corrigan’s inner product formula (B.8). Similar to

the (S,A)-type deformation, there are no (A,S)-background corrections to the instanton

effective action for the anti-self-dual case because corrections are sub-leading order.

It is possible to generalize the results in this paper to N = 4 and N = 2∗ super

Yang-Mills theories. These generalizations will appear in a forthcoming paper [32].
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A. The ADHM construction in (deformed) N = 2 supersymmetric Yang-

Mills Theory

Here we briefly summarize the ADHM construction [5, 34]. As we have seen in the equations

of motion (2.44), (2.47) for the (S,A)-deformed action, the self-dual equations for the gauge

field and the spinor field do not change in the deformed theory. Therefore one can solve

them by the ADHM construction based on the undeformed theory. We introduce the

(N + 2k) × 2k matrix ∆λjα̇ which is given by

∆λjα̇ = aλjα̇ + bλj
βσµβα̇x

µ, (A.1)

where λ = 1, 2, . . . , N + 2k and i, j = 1, 2, . . . , k. k is the instanton number. aλjα̇ and bλj
β

are the constant matrices. They are decomposed as

aλjα̇ =

(

wujα̇

(a′ij)αα̇

)

, bλj
β =

(

0

δijδαβ

)

, λ = u+ iα, u = 1, 2, . . . , N. (A.2)

The matrix ∆ should satisfy the following ADHM constraints,

∆̄α̇λ
i ∆

λjβ̇
= (f−1)ijδ

α̇
β̇
, f =

[

1

2
w̄α̇wα̇ + (xµ + a′µ)2

]−1

, a′µ =
1

2
σ̄α̇α

µ a′αα̇, (A.3)

2In [31], the mass terms for the anti-chiral fermion Λ̄ was considered. Here we consider different chirality

of the (A,S)-type background considered in [31] to generate the mass term for Λ.
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where a′µ, wα̇, and w̄α̇ are called ADHM moduli. The ADHM constraints in terms of

a′αα̇, w̄α̇ are

(~τ)α̇
β̇
(w̄β̇wα̇ + ā′β̇αa′αα̇) = 0, a′µ = ā′µ. (A.4)

We also introduce (N + 2k) ×N matrix U which satisfies

∆̄U = 0, ŪU = 1N , UŪ + ∆α̇f∆̄α̇ = 1N+2k, (A.5)

where 1n is the n× n identity matrix. The self-dual gauge field is constructed from U as

A(0)
µ = −iŪ∂µU. (A.6)

The corresponding field strength F
(0)
µν is

F (0)
µν = −4iŪ bα(σµν)α

βf b̄βU. (A.7)

The self-duality of F
(0)
µν immediately follows from that of σµν .

Nextly we consider the fermionic moduli which appear as the fermionic zero modes

on the instanton background. We solve the Dirac equation on the self-dual background

σ̄µ∇µΛ(0)I = 0. The ansatz of the solution is

Λ(0)I
α = Λα(MI) = Ū(MIf b̄α − bαfM̄I)U, (A.8)

where MI is the (N + 2k) × k constant matrix. Plugging (A.8) to the Dirac equation,

we obtain

(σ̄µ)α̇α∇µΛ(0)I
α = 2Ū bαf(M̄I∆α̇ + ∆̄α̇MI)f b̄αU. (A.9)

Then we have the fermionic ADHM constraint

M̄I∆α̇ + ∆̄α̇MI = 0, (A.10)

or equivalently

µ̄Iwα̇ + w̄α̇µ
I + [M′αI , a′αα̇] = 0, M′I

α = M̄′I
α , (A.11)

where we have decomposed MI as

MI
λj =

(

µI
uj

(M′I
α )ij

)

. (A.12)

M′I
α , µI , µ̄I are called fermionic ADHM moduli.

Now we solve the equation of motion of the scalar field ϕ(0)

∇2ϕ(0) + i
√

2Λ(0)IΛ
(0)
I + iCµνF (0)

µν = 0. (A.13)

First we consider the case of Cµν = 0. The ansatz of the solution [34] is

ϕ(0) = −i
√

2

4
ǫIJ ŪMIfM̄JU + Ū

(

φ 0

0 χ12

)

U. (A.14)
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The asymptotic behavior of (A.14) is given by lim|x|→∞ϕ(0) = φ. Computing ∇2ϕ(0), one

can show that

∇2ϕ(0) = −i
√

2ǫIJΛ(0)IΛ(0)J + 4Ūbf

[

i

√
2

4
ǫIJM̄IMJ − {f−1, χ} + ∆̄α̇

(

φ 0

0 χ12

)

∆α̇

]

f b̄U

= −i
√

2ǫIJΛ(0)IΛ(0)J + 4Ūbf

(

i

√
2

4
ǫIJM̄IMJ − Lχ+ w̄α̇φwα̇

)

f b̄U, (A.15)

where Lχ is defined by

Lχ =
1

2

{

w̄α̇wα̇, χ
}

+
[

a′µ, [a
′µ, χ]

]

. (A.16)

Then ϕ(0) satisfies the equation of motion if χ satisfies

Lχ = i

√
2

4
ǫIJM̄IMJ + w̄α̇φwα̇. (A.17)

In the case of Cµν 6= 0, the ansatz of the solution is changed as [25]

ϕ(0) = −i
√

2

4
ǫIJ ŪMIfM̄JU + Ū

(

φ 0

0 χ12 + 1kC

)

U, (A.18)

where C is the 2 × 2 matrix of which component is Cα
β = 1

2C
µν(σµν)α

β. Now one can

show that

∇2ϕ(0) = −i
√

2ǫIJΛ(0)IΛ(0)J + 4Ūbf

[

i

√
2

4
ǫIJM̄IMJ − 2f−1C

− {f−1, χ} + ∆̄α̇

(

φ 0

0 χ12 + 1kC

)

∆α̇

]

f b̄U.

(A.19)

The third term in the right hand side of (A.19) becomes the deformation term in the

equation of motion (A.13) due to (A.7). The C-dependent part in the last term is

∆̄α̇

(

0 0

0 1kC

)

∆α̇ = (ā′ + x̄)α̇αCα
β(a′ + x)βα̇ = Cµν [a′µ, a

′
ν ]. (A.20)

Then we obtain

∇2ϕ(0) = −i
√

2ǫIJΛ(0)IΛ(0)J − iCµνF (0)
µν

+ 4Ū bf

(

i

√
2

4
ǫIJM̄IMJ − Lχ+ w̄α̇φwα̇ + Cµν [a′µ, a

′
ν ]

)

f b̄U.
(A.21)

Hence ϕ(0) is the solution of the deformed equation of motion if χ satisfies

Lχ = i

√
2

4
ǫIJM̄IMJ + w̄α̇φwα̇ + Cµν [a′µ, a

′
ν ]. (A.22)

We can also solve the instanton equation of ϕ̄(0) in a similar way.
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B. Detailed calculations of the instanton effective action

B.1 Calculation of (2.59) and (2.60)

Here we give the detail for the calculation of (2.59) and (2.60). In order to calculate (2.59),

we use the formula

[

ϕ̄(0),Λ
(0)
αI

]

= (σµ)αα̇∇µψ̄
α̇
I + Λα(NI) + ǫIJC̄α

βΛβ(MJ ), (B.1)

where ψ̄I and NI are given by

ψ̄α̇
I = ψ̄

(1)α̇
I + ψ̄

(2)α̇
I , (B.2)

ψ̄
(1)α̇
I =

1

2
Ū

[

−MIf∆̄α̇

(

φ̄ 0

0 χ̄12 + 1kC̄

)

+

(

φ̄ 0

0 χ̄12 + 1kC̄

)

∆α̇fM̄I

]

U, (B.3)

ψ̄
(2)α̇
I = Ū

(

0 0

0 Gα̇
I 12

)

U, (B.4)

∂µGα̇
I = 0, (B.5)

NI =

(

φ̄ 0

0 χ̄12 + 1kC̄

)

MI −MI χ̄+ 2

(

0 0

0 Gα̇
I

)

aα̇ − 2aα̇Gα̇
I . (B.6)

Here the k × k matrix Gα̇
I is chosen such that NI satisfies the fermionic ADHM condition

N̄I∆
α̇ + ∆̄α̇NI = 0. From the formula (B.1), (2.59) becomes

∫

d4x
1

κ
Tr

[

− i√
2
Λ(0)αI

[

ϕ̄(0),Λ
(0)
αI

]

− i√
2
C̄(αβ)Λ(0)I

α Λ
(0)
βI

]

=

∫

d4x
1

κ
Tr

[

− i√
2
∂µ

(

Λ(MI)σµψ̄I

)

− i√
2
Λα(MI)Λα(NI)

]

. (B.7)

The first term in the right hand side of (B.7) vanishes since Λ(MI)σµψ̄I behaves as |x|−5 for

large |x|. The second term can be evaluated using Corrigan’s inner-product formula [36, 37]

∫

d4x
1

κ
Tr
[

Λα(MI)Λα(NI)
]

= −π
2

2κ
trk

[

M̄I(P∞ + 1)NI + N̄I(P∞ + 1)MI
]

= −2π2

κ
ǫIJtrk

[

µ̄I φ̄µJ − M̄IMJ χ̄+
1

2
C̄(αβ)M′I

αM′J
β

]

,

(B.8)

where P∞ = lim|x|→∞UŪ . Since the part proportional to Gα̇
I vanishes in (B.8) by fermionic

ADHM condition (2.18), we do not need to solve Gα̇
I explicitly. Then we obtain (2.59)

∫

d4x
1

κ
Tr

[

− i√
2
Λ(0)αI

[

ϕ̄(0),Λ
(0)
αI

]

− i√
2
C̄(αβ)Λ(0)I

α Λ
(0)
βI

]

=
1

κ

√
2π2iǫIJtrk

[

µ̄I φ̄µJ − M̄IMJ χ̄+
1

2
C̄(αβ)M′I

αM′J
β

]

. (B.9)
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Nextly we prove (2.60). The left hand side in (2.60) can be rewritten as
∫

d4x
1

κ
Tr
[

−iϕ̄(0)F (0)
µν C

µν
]

= −8Cα
β

∫

d4x
1

κ
Tr

[

Ū

(

φ̄ 0

0 χ̄12 + 1kC̄

)

Pbαf b̄βU
]

= −2Cα
β

∫

d4x
1

κ
Tr
[

(σµν)β
α∇µRν + 2Ūbα{f, χ̄}b̄βU

]

. (B.10)

Here Rµ is defined by

Rµ =
1

2
Ū

[

bα(σµ)αα̇f∆̄α̇

(

φ̄ 0

0 χ̄12 + 1kC̄

)

−
(

φ̄ 0

0 χ̄12 + 1kC̄

)

∆α̇(σ̄µ)α̇αf b̄α

]

U. (B.11)

Then the first term of (B.10) is evaluated as

−2Cα
β

∫

d4x
1

κ
Tr
[

(σµν)β
α∇µRν

]

= 2Cµν

∫

d4x
1

κ
∂µTrRν

=
1

κ
π2CµνC̄µνtrk

[

w̄α̇wα̇

]

. (B.12)

The second term of (B.10) becomes a total derivative and is calculated as

−4Cα
β

∫

d4x
1

κ
Tr
[

Ūbα{f, χ̄}b̄βU
]

=
4

κ
Cµν

∫

d4x ∂µtrk

[

[

f, a′ν
]

χ̄
]

= −4π2

κ
trk

[

Cµν [a′µ, a
′
ν ]χ̄
]

, (B.13)

where we have used the asymptotic behavior of f given by

f =
1

|x|2 1k − 2xλ

|x|4 a
′
λ + O(|x|−4). (B.14)

Finally, we obtain the result in (2.60)

∫

d4x
1

κ
Tr
[

−iϕ̄(0)F (0)
µν C

µν
]

=
π2

κ
trk

[

−4Cµν [a′µ, a
′
ν ]χ̄+ CµνC̄µνw̄

α̇wα̇

]

. (B.15)

B.2 Verification of the form of the discrepancy term

The contribution from (2.67) to the instanton effective action , δS
(0)
eff is

δS
(0)
eff = − 1

16κ

∫

d4x CρσC̄ρσ|x|2Tr
[

F (0)µνF (0)
µν

]

. (B.16)

From Osborn’s formula [38] Tr
[

F (0)µνF
(0)
µν

]

= −�
2trk log f , δS

(0)
eff can be rewritten in a

total derivative as

δS
(0)
eff =

1

16κ
CρσC̄ρσ

∫

d4x |x|2�2trk log f

=
1

16κ
CρσC̄ρσ

∫

d4x ∂µ

[

|x|2�∂µ − 2xµ
� + 8∂µ

]

trk log f. (B.17)

Plugging the explicit form of f (A.3) into (B.17), we obtain (2.65).
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